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Abstract Urban drainage network models (UDNMs) have been widely used to facilitate flood management.
Typically, a UDNM is developed using data from Geographic Information Systems (GIS), and hence it consists
of many short pipes and connection nodes or manholes. To improve modeling efficiency, a GIS‐based model is
generally skeletonized by removing many elements. However, there has been surprisingly a lack of knowledge
on to what extent such skeletonization can affect the model's simulation accuracy, resulting in uncertainty in
flood risk estimation. This paper makes the first attempt to quantitatively evaluate multidimensional impacts of
different skeletonization levels on hydraulic properties of UDNMs. This goal is achieved by a new evaluation
framework comprising of eight existing and new metrics that make use of hydrographs, main pipe hydraulics
and flood distribution properties. A real‐life UDNM is used to illustrate the new framework under various
rainfall conditions and different skeletonization levels. The new framework is also used to compare the
performance of two compensation methods in mitigating impacts caused by model skeletonization. Results
obtained show that: (a) model skeletonization can significantly affect the magnitude of peak flow at the outfall,
with a maximum overestimation of up to 20%, (b) hydraulics in main pipes can also be affected by model
skeletonization with the maximum flow increasing up to 35%, and (c) model skeletonization may significantly
alter the flood distribution properties which has been largely ignored in past studies. These findings provide
guidance for UDNM skeletonization, where their associated impacts should be aware in engineering practice.

1. Introduction
Urban floods have been one of the most damaging hazards to cities in recent years, leading to huge economic
losses and casualties (Zheng et al., 2015). Many actions have been taken to reduce the frequency of urban floods
or mitigate their associated impacts, including urban drainage expansion (Lin et al., 2020), sponge city con-
struction (Yin et al., 2021) and flood warning system development (Oh &Bartos, 2023). Implementations of these
actions often rely on urban drainage network models (UDNMs) that are developed to simulate the hydraulic
processes of the urban runoff (Radinja et al., 2021) on the ground and within the drainage pipes. For example, an
effective flood warning is typically derived from the simulation results of the UDNM conditioned on a given
rainfall event. Therefore, the development of the UDNMs is vital to enable the effective flood management and
mitigation (Huang et al., 2022).

Generally, a UDNM is developed by collecting data from a Geographic Information System (GIS), which are
often available in many cities (Niemi et al., 2019; Zhang & Pan, 2014). A GIS often consists of the typology of the
drainage system, pipes, manholes and other hydraulic structures, representing a comprehensive database that can
greatly facilitate the UDNM development. However, one challenge associated with the GIS‐based model is that it
often consists of many unnecessary details and elements such as a large number of short pipes, connection nodes
or manholes. While being able to simulate the hydraulic process for each single pipe, such a model is often
computationally demanding. This computational overhead may not be significant when only one or several
simulations are conducted, but it can substantially go beyond the computational resources that are typically
available when uncertainty analysis or optimization is needed (Maier et al., 2023). In addition, developing such
detailed models often has high costs due to the extensive data collection and processing. Furthermore, a model
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with a large number of elements would also affect the management (e.g., real‐time control) and analysis efficiency
in engineering practice (Huang et al., 2019).

To improve the modeling efficiency, surrogate models (also known as metamodels or emulators) or parallel
computing technology can be used (Garzón et al., 2022; Nkwunonwo et al., 2020). Specifically, the former either
uses simplified governing equations or data‐driven models to directly capture the input‐output relationships
(Farina et al., 2023; Thrysøe et al., 2019). While being efficient, the surrogate models cannot ensure their per-
formance when future conditions being considered (configurational changes) go beyond the data range used for
model development (Farina et al., 2023; Kim & Han, 2020). While the parallel computing technology is effective
in speeding up simulations for many different models (Kotyra, 2023; Xia et al., 2018), its implementation for a
UDNM is not straightforward due to the underlying strong hydraulic connections between different elements
within the UDNM (Burger et al., 2014). In addition, parallel computing resource is not easily accessible in en-
gineering practice, hindering its wide application (Sadler et al., 2019). Another approach to improve the UDNM's
modeling efficiency is the development of a conceptual model that is built by replacing pipes/structures/sub-
networks with equivalent artificial tanks/reservoirs (Farina et al., 2023; Fischer et al., 2009; Mahmoodian
et al., 2018). However, this type of approach, typically based on the preservation of mass balances only, ignores
the hydraulics within the subnetworks that have been replaced by equivalent reservoirs, and hence is only of
limited use in certain applications such as real‐time control (e.g., van der Werf et al., 2023). In practice, where is
the line draw between simplification and full catchment scale is application specific as it depends on the modeling
scope and the level of detail information required (Achleitner et al., 2007). For instance, some model applications
require looking at a catchment as a whole with more or less detail whilst in other cases it is sufficient to simulate
only the urban drainage network, either with more detail (e.g., system optimization) or less detail (e.g., optimal
operation of pumps or real time control).

In contrast to the above approaches, model skeletonization can be an effective approach to enable efficient model
management and simulation (Huang et al., 2019). Skeletonization refers to a process that removes (or replaces
with equivalent) some hydraulic elements that are believed to have rather limited impacts on the hydraulics of the
original UDNM, such as pruning short pipes at terminal nodes or merging some short pipes into single equivalent
pipes (Davidsen et al., 2017). The resulting skeletonized model is expected to represent the main hydraulic
properties of the original full UDNM, while simplifying the complexity of model structures (Cantone &
Schmidt, 2009). The main merit of the model skeletonization is its improvement in modeling efficiency whilst
preserving prediction accuracy (Davidsen et al., 2017).

In engineering practice, skeletonization of UDNMs is considered necessary when (a) a skeletonized model can
significantly improve simulation efficiency for a real, large UDNM under a long time rainfall event (e.g., 1 year,
Huang et al., 2022); (b) a skeletonized model can be useful for testing many rainfall scenarios or simulations
required during the optimization design, optimal operation or uncertainty analysis (Huang et al., 2019), (c) the
management efficiency (e.g., real‐time control) can be substantially enhanced by a skeletonized model, which can
greatly facilitate its practical implementation, and (d) model skeletonization is able to maintain the main physical
structure or process of the UDNMs, but this cannot be achieved by black‐box or simplified methods such as
machine‐learning surrogate models (Garzón et al., 2022) or conceptual models (Fischer et al., 2009; Mahmoodian
et al., 2018). In other words, the skeletonized models are more interpretable and transparent relative to simplified
models, as the main hydraulic dynamics and relationships between elements within the network are preserved.

It is acknowledged that model skeletonization can induce simulation errors and additional uncertainty compared
to the original full model (Hellbach et al., 2012). Such uncertainty combined with other sources of uncertainties
can be one of the main limitations for model's practical implementation (Pedersen et al., 2022). However, there
have been surprisingly few studies investigating the potential impacts associated with model skeletonization. In
other words, while model skeletonization has been widely used in engineering practice, its induced simulation
errors and uncertainties have been largely ignored or have not been systematically investigated. Limited refer-
ences include Davidsen et al. (2017) who showed that the peak flow of the outfall of a skeletonized model can
deviate from the full model by about 15%. Cantone and Schmidt (2009) demonstrated that there is a possibility
that the user might not correctly predict the magnitude, timing, and shape of the outfall hydrograph when using
simplified models. Therefore, there is still a lack of knowledge of the extent such skeletonization can affect the
model's simulation accuracy which, in turn, leads to uncertainty in flood risk estimation.
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To this end, this paper makes the first attempt to develop a comprehensive framework that quantitatively eval-
uates the skeletonization impacts on UDNM predictions. The framework considers different aspects of the
UDNM simulations, including the magnitude and timing of peak flow at the outfall, the hydrograph similarity of
the outfall flow, the hydrograph similarity at monitoring locations, the overall water depth, velocity and flow in
main pipes as well as the flood volume (depth) and flood ranges. The main contributions/novelties of this study
include: (a) the proposal of a new framework that enables a comprehensive and systematic evaluation of UDNM's
skeletonization on its predictions, (b) the development of a new flood property similarity (FPS) metric that is able
to simultaneously account for flood volume (depth) and spatial range when assessing the model skeletonization
errors, (c) assessment of the proposed framework's contribution to two existing compensation methods for the
mitigation of simulation errors induced by model skeletonization, and (d) the theoretical exploration between
model skeletonization errors, rainfall properties (e.g., peak intensity (PI) and return periods (RPs)) and model
outputs (predictions).

2. Methodology
2.1. Evaluation Framework

The framework developed for evaluating the impacts of model skeletonization on UDNMs is introduced here. As
outlined in Table 1, the framework consists of eight key metrics designed to provide a thorough assessment,
covering the main hydraulic processes of a UDNM including the outfall, the monitoring locations, the main pipes,
and the flood outcomes. As shown in Table 1, the hydraulics and the hydrograph at the outfall are typically
important in engineering practice as they represent direct indicators for model performance evaluation (Davidsen
et al., 2017). In addition to the outfall, this study considers the hydrographs at the monitoring locations within the
UDNM as it can offer an overall hydraulic assessment of the UDNM. The rationale behind this is that a skele-
tonized model may produce small hydraulic errors at the outfall but it may still generate larger simulation de-
viations at intermediate urban drainage network locations. For a UDNM, it is critical to ensure predictions for the
main pipes (pipes with larger diameters, e.g. diameters greater than 800 mm) match the real values as these pipes
can significantly affect the system delivery ability. Therefore, the hydraulics in the main pipes, including water
depth, velocity and flow are considered in the proposed framework for assessing the performance of a skele-
tonized model. Typically, the main purpose of a UDNM is the prediction of urban flood for a given rainfall event,
and hence the associated flood simulation errors produced by model skeletonization are of great importance too.
In recognizing this, a new metric called FPS is proposed in this study.

It is noted that pumps and pressure mains are not directly considered in the metrics, but they can be easily
accounted for in applications. More specifically, pump flows can be assessed using the metric of hydrograph
similarity at monitoring locations (i.e., the pumping flows are often monitored). The pressure mains can be

Table 1
Summary, Purposes, and Importance Statements of Evaluation Framework Metrics

Metrics Purpose Importance

Magnitude of peak flow at the
outfall

Assess the changes in the outfall peak flow Critical for model calibration and flooding prediction

Timing of peak flow at the outfall Focuses on the time that peak flow occurs Important for model calibration and flooding analysis

Hydrograph similarity at the outfall Assess the hydrograph similarity at the outfall Important for model calibration and runoff analysis

Hydrograph similarity at monitoring
locations

Evaluate the hydrograph similarity at the intermediate
locations within the UDNM

Important for flooding location analysis

Overall water depth in main pipes Understand the overall water depth changes in main
pipes induced by model skeletonization

Import for overflow prediction and management

Overall velocity in main pipes Reveal the overall pipe velocity variations induced by
model skeletonization

Important for model calibration and sediment analysis

Overall flow in main pipes Show the overall pipe flow changes induced by model
skeletonization

Important for model calibration and system operation

Flood property similarity Evaluate the deviations of flood properties induced by
model skeletonization

Critical for flooding analysis and management
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assessed by the metrics of overall velocity and flow in main pipes. The summary, purposes and importance
statements of evaluation framework metrics are given in Table 1.

2.1.1. Magnitude and Timing of Peak Flow at the Outfall

The magnitude and timing of peak flow at the outfall are critical aspects in assessing a UDNM's simulation ability
during rainfall events, and thus they are included in the proposed framework. This is because accurate prediction
of peak flow is vital for effective flood warning, mitigation and emergency response planning. In this study, two
metrics called the peak value deviation percentage (PDP) and the peak time change (PTC) are utilized to evaluate
changes of the outfall peak flow induced by model skeletonization. These two metrics are defined as follows:

PDP =
Ps − Po
Po

× 100% (1)

PTC = PTs − PTo (2)

where Ps and P0 are the peak value of a hydrograph of the skeletonized model and the original model respectively,
PTs and PT0 are the peak time of a hydrograph of the skeletonized model and the original model respectively.

2.1.2. Hydrograph Similarity at the Outfall and Monitoring Locations

Hydrographs similarity at the outfall and locations with sensors can be important metrics to evaluate the impacts
of the skeletonization on the model's performance. A number of metrics are available to calculate the hydrograph
similarity, such as the Kling‐Gupta Efficiency (KGE,Gupta et al., 2009), the Nash‐Sutcliffe Efficiency and root
mean square error. In this study, the KGE is utilized, as it is commonly used for assessing the similarity between
two hydrographs (Zheng et al., 2023), but the use of other metrics does not affect the application of the proposed
framework. The KGE is defined as follows:

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
cov(Qo,Qs)

σQo
σQs

− 1)
2

+ (
σQs

σQo

− 1)
2

+ (
μQs

μQo

− 1)
2

√
√
√
√

(3)

whereQs andQo are the hydrograph of the skeletonized model and the original model respectively. cov(Qo,Qs) is
the covariance of these two hydrographs. σQs

and σQo
are the standard deviation of the hydrograph of the skel-

etonized model and the original model respectively. μQs
and μQo

are the mean of a hydrograph of the skeletonized
model and the original model respectively. A higher KGE value indicates a greater similarity between two
hydrographs, with KGE = 1 indicating identical hydrographs.

2.1.3. Overall Hydraulic Properties in Main Pipes

In addition to the hydrograph similarity at the outfall and locations with sensors, overall hydraulic properties in
main pipes can be important to evaluate the simulation impacts caused by model skeletonization. The water depth,
velocity and flow in the main pipes represent the predominant response characteristics of a UDNM to a rainfall
event. Focusing solely on main pipes (say pipe with diameter larger than 800 mm) is because these pipes are more
likely to play a more important role than smaller‐diameter pipes due to their associated large flow. Therefore,
main pipes are typically retained during model skeletonization. However, the impacts of model skeletonization on
these hydraulic properties has been largely neglected in the literature. To this end, this paper considers the
following metric to assess the hydraulic changes in the main pipes caused by model skeletonization:

RMM(H) =
1
N ∑N

i max(Hs,i) −
1
N ∑N

j max(Ho,j)

1
N ∑N

j max(Ho,j)
× 100% (4)

where H is a state variable of main pipes, such as water depth, velocity and flow, and RMM(H) is the relative
mean error of that state variable between the skeletonized model and the original model. Hs,i and Ho,j are the time
series of a particular state variable at the ith main pipe in the skeletonized model and the original model
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respectively. N is the total number of main pipes, which is the same in both models. 1
N ∑

N

i
max(Hs,i) and

1
N ∑

N

j
max(Ho,j) are the averages of maximum values of a state variable H of all main pipes in the skeletonization

model and the original model, respectively. In this study, the pipes with diameters greater than 800 mm are
considered as the main pipes, but a different choice of the main pipes would not affect the application of the
proposed evaluation metric.

2.1.4. Flood Property Similarity

As previously stated, one purpose of a UDNM is to simulate the flood process driven by a given rainfall event, and
hence the flood simulation accuracy is crucial for a UDNM. The flood property can be mainly assessed by the
flood volume and the flood locations, where the former aspect has been reported in literature (Davidsen
et al., 2017) but the latter has not been explicitly considered as an evaluation metric. The number and/or the spatial
locations of the overflowing manholes is important in addition to the flood volume or depth to enable effective
flood mitigation decision‐making. However, it is not straightforward for a single metric to assess the FPS that can
simultaneously accounts for flood volume and locations.

This study proposes a new metric, termed “flood property similarity” (FPS), to simultaneously measure the flood
volume (depth) and overflow manhole location differences due to model skeletonization. Consider that Fs and Fo,
represent flood results of the skeletonized and the original model respectively. Each input F is a set of three‐
dimensional arrays, that is, F = {(a1, b1, V1), (a2, b2, V2), …, (an, bn, Vn)}, where n is the number of flooded
manholes, referred to as overflow nodes. Each (ai, bi, Vi) represents the coordinates (a, b) in meters of the ith
overflow node and its associated total overflow volume V in cubic meters.

Figure 1 illustrates the calculation of the FPS. In Figure 1a, the skeletonized model (Fs) has two overflow nodes,
(a= 10, b= 30, V= 500) and (40, 18, 800), whereas the original model (Fo) in Figure 1b has three overflow nodes,
(10, 36, 450), (30, 12, 300) and (42, 18, 600). When comparing the difference between these two flood maps, it is
not straightforward to differentiate them using a single quantitative value. This is because the flood volumes at
each overflow node, the locations of the overflow nodes and the number of the overflow nodes are all different
between the skeletonized and original models. To address this issue, the FPS proposed in this study measures a
difference to all other grid nodes within the flood area using the impact values induced by the overflow nodes.

More specifically, the FPS metric quantifies the similarity between Fs and Fo in two steps: (a) by generating
impact value maps for both models using Equations 5 and 6, and (b) by comparing these maps to derive the final
FPS value. As shown in Equation 5, the impact value f (x,y,a,b,V) is a function of the overflow node (a, b, V),
where (x, y) is the grid cell being affected by this overflow node. Let us assume that impact of an overflow

Figure 1. Spatial distribution of flood results Fs (a) and Fo (b) shown on a quadratic grid, where the triplet (a, b, V) represents x and y‐axes of the overflow node and V the
overflow volume.
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network node on its surrounding grid cells exhibits a cylinder shape with an
influence radius d (as shown in Figure 2), where the water depth h at each grid
node is used to represent the impact value. This h can be approximately
estimated using V

d2 , as shown in Figure 2 and Equation 5.

In engineering practice, for the gird cells that are very close to the overflow
node, the d can be very small, leading to a very large value of V

d2 . To solve this
problem, a dmin is defined where all grid cells within the dmin distance to the
overflow node have identical impact value.

Following above method, for the grid cell at (10, 10) in Figure 1a, the impact
values produced by the overflow nodes (10, 30, 500) and (40, 18, 800) are

1.25 and 0.83 respectively. Consequently, the total impact value produced by the two overflow nodes on the cell
(10,10) is I = 2.08, as calculated using Equation 6. In a similar way, the impact value produced by the three
overflow nodes on the cell (10,10) (see Figure 1b) is I = 1.96.

f (x,y,a,b,V) =
V
d2

d =
⎧⎨

⎩

dmin, if (x − a)2 + ( y − b)2 ≤ d2min

(x − a)2 + ( y − b)2, if (x − a)2 + ( y − b)2 > d2min

(5)

I(x,y) =∑
n

i=1
f (x,y,ai,bi,Vi) (6)

As shown in Equations 5 and 6, the impact values across the area are influenced by the flood volume and co-
ordinates of all overflow nodes. Changes in either would alter the impact value distributions. Therefore, the FPS
metric can be calculated using the impact value distributions as shown Equation 7.

FPS = 1 −
∑G

j=1
⃒
⃒I( xj,yj,Fs) − I( xj,yj,Fo)

⃒
⃒

∑G
j=1 I( xj,yj,Fo)

(7)

where I( xj,yj,Fs) and I( xj,yj,Fo) are impact value of the jth grid node, and the total number of the grid cell is G.

The numerator in Equation 7 is the sum of the absolute differences of impact values at each grid cell before and
after model skeletonization, while the denominator is the sum of impact values for all grid cells in the original
model. The value of FPS ranges from ‐∞ to 1 (similar to KGE), where a larger FPS indicates a greater similarity in
the flood property between the skeletonized model (Fs) and the original model (Fo), where this value can
simultaneously consider the variation in flood volume and distribution. FPS = 1 represents that the flood
simulation results from the Fs are identical to those from Fo. It is noted that the FPS depends on the direct surface
distance. The advantage of this metric over the use of the network graph is that it can directly account for the
spatial distribution of floods. This is because the network graph indicates the flow directions of the runoff in the
pipes, which can be significantly different from the flooding locations on the ground surface which is mainly
dependent on the surface elevation.

2.2. Skeletonization Method

Various techniques for model skeletonization are available, including trimming, pruning, merging of branches
(Leitão et al., 2010) and removal of pipes based on their importance (Meijer et al., 2018). Model trimming is used
to remove some parts of the UDNM that are considered to be not important, which is often applied to deal with
case studies with many areas composed of small pipes. Merging of branches is often employed to connect pipes by
removing their intermediate nodes, and this method can be adopted when it is aimed at reducing the number of
nodes is the purpose. The method of removal of pipes based on their importance is often carried out by deleting
some pipes that have rather limited impacts on the UDNM's overall hydraulic performance, which is conditioned
on the hydraulic simulation results of the UDNMs. The present study does not focus on the application of different

Figure 2. Illustration of the physical representation of the impact value
associated with each overflow node on its surrounding grid cell.
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skeletonization methods, and hence a straightforward and widely accepted pruning technique is used here. More
specifically, this skeletonization method removes the pipe when the following two specific conditions are
simultaneously met: the pipe does not have any upstream pipes, and its length is shorter than a user‐defined
threshold, Lt. When the pipe is removed, its corresponding sub‐catchments are reconnected to its downstream
node. Such a process is carried out from the downstream ends of the UDNM to its upstream pipes until no pipe
meets the specified conditions. Notably, a larger Lt indicates a larger level of skeletonization. While the use of
different skeletonization methods does not affect the application of the proposed framework, future studies should
explore the performance of other skeletonization methods such as the removal of pipes based on their importance
(Meijer et al., 2018).

2.3. Compensation Methods

In this study, two compensation methods proposed by Davidsen et al. (2017) are compared in their performance to
mitigate the simulation errors introduced by model skeletonization. This is done with the aid of the proposed
framework. These two methods are the time‐compensation method (TCM) and the volume‐compensation
method (VCM).

2.3.1. TCM

When a pipe is removed during the skeletonization process its upstream sub‐catchments are connected to its
downstream node. This indicates that the runoff from these sub‐catchments would reach the downstream node
earlier compared to the original model due to ignoring the traveling time in the pipe that is removed. The TCM
accounts for the effect by adding extra time to each sub‐catchment's rainfall time series.

Figure 3a is used to illustrate the TCM, where a sub‐catchment (SC1) is associated with outlet N1. Assuming that
pipes P1 and P2 have been removed due to their short length, and hence SC1 is now connected to node N3. The
travel time for each removed pipe j can be estimated using Equation 8, and the compensation time for SC1 is the
sum of the travel time in all removed pipes.

Ti =∑
j

nj · Lj
R2/3h,j · Sj

1/2 (8)

where Ti is the compensation time associated with sub‐catchment i; L is the pipe length [m], n is Manning's
coefficient [s/m1/3], Rh is the hydraulic radius [m], S is the pipe slope, and subscript j denotes jth pipe that has been
removed. Different sub‐catchments have different compensation times and this value is used to delay the start
time of the rainfall event whose value is Ti for this sub‐catchment.

Figure 3. Illustration of time‐compensation method and volume‐compensation method.
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2.3.2. VCM

Whilst the model skeletonization simplifies the topology of the UDNM it inevitably reduces the total volume (i.e.,
storage capacity of) of the network. The VCM aims to preserve the original volume characteristics of the network
as much as possible. As shown in Figure 3b, the total volume of all pipes that have been removed during the
skeletonization process is added to the pipe directly connecting to these removed pipes, with added volume
determined as follows:

Lnewi − Loldi =

∑
j
Lj · Aj

Ai
(9)

where Lnewi is the new pipe length of pipe Pi associated with SCi, where its upstream pipes are removed as shown
in Figure 3b. Lnewi is the original pipe length. Ai and Aj are the pipe cross‐section area of Pi and Pj, respectively.

3. Case Study
3.1. Description

The urban drainage network tested in this paper is located in SL, a small town in Guangdong Province, China. As
shown in Figure 4, it covers an area of 4 km2 and serves approximately a population of 100,000 people. The
network was built in the 1990s and was designed to collect, convey, and discharge rainwater only. To construct
the UDNM for this case study area, the pipe data, the digital elevation model data (5 m × 5 m resolution) and the
land use data were all collected from the GIS database provided by the local government drainage department.
The analyzed network was modeled using the Storm Water Management Model (SWMM), which has been
widely used in engineering practice (Rossman, 2015). The D8method (Warsta et al., 2017) was applied to identify
the sub‐catchments for each manhole of the UDNM. The full model consists of 5,104 pipes with a total length of
58 km, and has one outlet located in the northeast of the study area as shown in Figure 4.

Figure 4. The urban drainage network model for the SL city located in Guangdong Province, China.
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The original full model was skeletonized by the method proposed in Section 2.2 at six different levels by using
length thresholds of Lt = 5, 10, 15, 20, 25, and 30 m respectively. The six skeletonized models were labeled as
ST1, ST2, ST3, ST4, ST5, and ST6, respectively. ST1 represents the lowest degree of skeletonization corre-
sponding to a Lt = 5 m and ST6 represents the highest degree of skeletonization corresponding to a Lt = 30 m.
Detailed information about skeletonized networks is displayed in Figure 5, where Figure 5a also shows the
drainage flowrate direction and Figure 5f shows the monitoring locations of this UDNM.

3.2. Rainfall Events Used in This Study

To understand how skeletonization affects the model's performance, a total of 64 rainfall events were used using
combinations of eight rainfall intensities and eight rainfall patterns. The eight rainfall intensities considered
represent different RPs of 1, 2, 5, 10, 20, 30, 50, and 100 years, respectively. The eight rainfall patterns were taken

Figure 5. Comparative diagrams of the urban drainage network model with six levels of skeletonization (ST1‐ST6).
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from seven recorded events (Figures S1a–S1c and S1e–S1h in Supporting Information S1) and a single typical
design event of Chicago‐type (Lin et al., 2020) with a peak ratio of 0.5 and a duration of 2 hr (Figure S1d in
Supporting Information S1). The 64 rainfall events generated this way were provided as inputs into both original
and skeletonized models of the analyzed urban drainage network. At the end, TCM and the VCM introduced in
Section 2.3 were implemented for different skeletonization levels.

4. Results and Discussions
4.1. Performance Analysis of Skeletonized Models

4.1.1. Magnitude and Timing of Peak Flow at the Outfall

Figure 6a illustrates the distribution of the peak value deviation percentage (PDP) at the outfall for different
skeletonized models for 64 analyzed rainfall events. As shown in this figure, the PDP values at the outfall are
increasing for higher levels of model skeletonization with a mean PDP value for ST6 being about 8.6%. It can also
be observed that the maximum PDP value obtained at the outfall that the peak flow of the skeletonized model can
be as much as 20% larger than the corresponding original model value. This highlights that model skeletonization
can result in a significant overestimation of flood risk, which should be given sufficient attention in engineering
practice.

Figure 6b shows that while higher model skeletonization can overall induce a larger peak flow simulation value
compared to the original model, large variations can be also observed. Interestingly, the skeletonized model can
underestimate the outfall flowrate under some particular rainfall patterns and intensities as negative PDP values
are observed. For example, for RP of 10 years, the ST1 model produces an outfall flow with PDP about − 8%, but
for RP of 5 years the corresponding PDP is about +5%. Similar observations can be found for the ST6 model,
where PDP is about 4%, which is significantly lower than the values from RP = 5 or 20 years as shown in
Figure 6b.

We analyze further the variations of the PDP values of skeletonized models caused by increasing rainfall intensity
(RPs) and the presence of negative PDP values in Figure 6b. This is mainly because the peak flow at the outfall is
determined by the superposition of the peak flow of all its upstream pipes, and the latter is a function of the rainfall
intensity and patterns. In other words, the peak flows at the pipes of the UDNM can exhibit a significant
spatiotemporal variation, which can be affected by both the rainfall properties and pipe structure (e.g., length,
slope). Therefore, for the skeletonized models, a low or even negative value of PDP is possible for a large rainfall
event. This suggests an improved understanding of the impacts of the model skeletonization is very important.
The performance of skeletonized UDNMs should be also thoroughly evaluated under a wide range of rainfall
scenarios before engineering application.

In addition to examining the magnitude of peak flow deviation, PTC has been also investigated in this study. The
results (not shown in the paper) indicate that the timing of the peak flow is not substantially affected by model

Figure 6. (a) Peak flow deviation percentage (PDP) at the outfall across 64 rainfall scenarios and (b) PDP values of ST1 and
ST6 models under R1 pattern.
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skeletonization, matching well with the findings reported by Cantone and Schmidt (2009). More specifically, for
this case study, the PTC values are within ±4 min for all different skeletonized models under different rainfall
events. It is anticipated that such a deviation would not significantly affect the engineering applications of the
skeletonized models.

4.1.2. Hydrograph Similarity at the Outfall and Monitoring Locations

Figure 7 shows the flow hydrograph of the ST6 and the original model at the outfall and N6 monitoring location
(locations shown in Figure 5). As it can be seen from this figure the two model hydrographs are similar in both
cases with monitoring location N6 exhibiting a larger deviation in peak flow than the outfall. This shows that the
model skeletonization would not significantly influence the overall flow evolving pattern of the UDNMs. This
can also be seen from the obtained KGE values shown in Table 2 (the values shown are averages across 64 rainfall
events).

As it can be seen from Table 2, the KGE values generally decrease with the
increasing model skeletonization level but the deterioration of the model
performance is rather minor. This is reflected by the fact that the mean of the
KGE for ST6 is 0.90, which is also acceptable for engineering application.
Note also that whilst the KGE value of the outfalls are consistently high some
of the upstream nodes have relatively low KGE values. For example, the KGE
of the outfall is 0.93 for ST6, but this value is only 0.82 for node N6 that is
located upstream. This implies that a good hydrograph similarity between the
original and skeletonized model at the outfall does not necessarily indicate the
same high performance for the nodes at the intermediate locations within the
UDNM. This shows that a comprehensive evaluation in addition to the outfall
is necessary to gain an improved understanding on how the model skeleto-
nization affects its performance.

4.1.3. Water Depth, Velocity, and Flow in Pipes

The hydraulics in the main pipes (defined in this case study as pipes with
diameter greater than 800 mm) are analyzed here in terms of water depth,

Figure 7. Hydrography of the original model and ST6 under R1 and RP = 10.

Table 2
Average Kling‐Gupta Efficiency Values Across 64 Rainfall Scenarios

Node

Models

ST1 ST2 ST3 ST4 ST5 ST6

N1 0.97 0.93 0.92 0.92 0.90 0.89

N2 0.99 0.98 0.98 0.98 0.97 0.96

N3 0.90 0.89 0.88 0.89 0.88 0.87

N4 0.93 0.93 0.92 0.92 0.90 0.87

N5 0.97 0.93 0.92 0.92 0.91 0.90

N6 0.99 0.84 0.84 0.83 0.83 0.82

N7 0.99 0.98 0.98 0.97 0.96 0.95

N8 0.98 0.98 0.96 0.95 0.95 0.92

Outfall 0.99 0.96 0.96 0.95 0.94 0.93

Mean 0.97 0.94 0.93 0.93 0.92 0.90
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velocity and flow. The water depth is represented by the relative depth which is defined as the ratio of water depth
and pipe diameter. Figure 8 shows the relative depth, velocity and flow for a typical pipe (P1 shown in Figure 5f,
whose diameter is 2,300 mm) between the original, ST3 and ST6 skeletonized models. As it can be seen from this
figure, the model with a high skeletonization level (ST6) tends to have a lager peak flow and a slightly earlier
occurrence of peak flow time when compared to the original model. Figure 9 (for R1, R2, R3 and R4) and Figure
S2 (for R5, R6, R7, and R8, in Supporting Information S1) shows the relative mean error of the maximum values
(RMM) for the relative depth, velocity and flow between the original model and the model with different
skeletonization levels for different rainfall RPs.

As it can be seen from Figure 9 and Figure S2 in Supporting Information S1, model skeletonization consistently
introduces an overall larger maximum value of the water depth, velocity and flow values in the main pipes
compared to the original model, where a higher skeletonization level is more likely to produce a larger value of
these hydraulic variables. In addition, such impacts can also be affected by the rainfall patterns. For instance,
when compared to the original model, the maximum water level and the maximum flow increase by an average of
15% and 30% respectively in the main pipes when the R1 rainfall pattern is used for ST6, but these two values are
reduced to about 10% and 20% if R4 is used. When R5‐R8 rainfall events are considered, RMM values for the
relative depth, velocity and flow between the original model and the model with different skeletonization levels
(and for different rainfall RPs) become small. This is because the peak intensities of the R5‐R8 rainfall events are
overall lower than those of R1‐R4 events.

To explore the impacts of PI of different rainfall patterns on RMM values, Figure 10 presents the average RMM
values for relative depth, velocity and flow over different RPs for skeletonized models ST3 and ST6 under eight

Figure 8. The relative depth, velocity and flow of a typical pipe (P1 in Figure 5) for the original model, ST3, and ST6
respectively.
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Figure 9. RMM values of relative depth, velocity, and flow of skeletonized models across R1, R2, R3, and R4 rainfall events.
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rainfall events. The x‐axis in Figure 10 shows the average PI of each of the eight rainfall events over eight RPs.
For instance, R1 has the highest average PI = 13.2 mm/min, while R6 has the lowest average PI = 1.3 mm/min.
The results in Figure 10 reveal that there is a strong linear relationship between the average PI of rainfall events
and the average RMM values for relative depth, velocity, and flow. In other words, for a skeletonized model, a
rainfall event with a larger PI is likely to lead to larger simulation errors for main pipes.

4.1.4. FPS

Figure 11 illustrates the difference in flood locations between the original model and ST6 under rainfall pattern R1
with RP = 100 years. In this figure, the black dots represent flood nodes in both the original model and skele-
tonized model, blue dots indicate flood nodes in the original model that have been removed by skeletonization,
and red dots denote new flood nodes induced by model skeletonization. As shown in Figure 11, the flood has
significantly changed spatially due to skeletonization (as a number of blue and red dots exist).

More specifically, many areas exist with blue dots but no red dots, indicating that many flood areas in the original
model are not recognized in the skeletonized model. More importantly, many red dots appear as a result of model
skeletonization, implying an overestimation of flood risk for these locations.

Figure 12 displays FPS values for different skeletonized models across 64 rainfall events, where FPS value of 1
representing an identical flood and a lower FPS values indicating a difference in flood predictions between the
original and skeletonized models. As shown in Figure 12a, despite some variations, a higher level of model
skeletonization is likely to induce a lower value of FPS, and hence a larger variation in flood property. For
example, the mean of the FPS is 0.6 for ST1, but it becomes about 0.1 for ST6. Figure 12b shows how FPS varies
as a function of changing rainfall intensities for ST6. While exhibiting moderate variations, a rainfall event with a
larger intensity is more likely to lead to a higher FPS for the skeletonized model, indicating a low difference in
flood property. This can be attributed to the fact that the flood property is dominated by rainfall intensity rather

Figure 10. Average RMM values versus average peak intensity of rainfall events over different return periods.
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than the model skeletonization when an extreme rainfall event occurs. Similar observations can be made for other
skeletonized models and hence they are not presented in the paper.

Results in this subsection suggest that model skeletonization can substantially affect the flood predictions of the
UDNM, which has not been sufficiently recognized before. This is because previous studies focus only on the
variation of hydrograph at the outfall caused by model skeletonization. Given that the main purpose of a UDNM is
to predict the flood for a given rainfall event, the knowledge of model skeletonization on flood property of the
UDNM is important. Therefore, the proposed quantitative metric, the FPS, is an important contribution of the
present study.

Figure 11. Flood distribution before and after model skeletonization for ST6 under rainfall R1 with RP = 100.

Figure 12. Flood property similarity distribution: (a) across different skeletonized models (b) across different return periods for model ST6.
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4.2. The Comparison of Model Performance Using Observations

The performance analysis of skeletonized models in the previous section considers the original model as a
reference, based on the assumption that it can reliably replicate real‐world conditions. In addition, in the present
study, only the original (i.g., full/detailed) model is calibrated using the observations, where the skeletonized
models are not re‐calibrated. This rationale behind the above is that (a) the use of the observations and the re‐
calibration of skeletonized models can result in additional uncertainty to the analysis, as the performance
impact can be simultaneously affected by model skeletonization, observation uncertainty and model calibration
process (Huang et al., 2022); (b) the impact of model skeletonization on the simulation performance is typically
ignored in engineering practice, or at least such impact is believed to be negligible, and hence the re‐calibration of
the skeletonized models is not often carried out in practice, and (c) a compensation method (Davidsen et al., 2017)
is often used to mitigate the potential impacts caused by model skeletonization, instead of using the re‐calibration
on the skeletonized models, where the performance of different compensation methods have analyzed in this
study.

Nonetheless, to further demonstrate the potential impacts caused by model skeletonization, the flow observations
at the outfall are used to enable the model comparison. In addition, some of the observations are used to calibrate
the original model and the skeletonized ST6 model respectively. More specifically, the real rainfall event R5 and
its corresponding observation data (flow data at the outfall with a 15‐min time resolution) are used for model
calibration for the original model and the ST6, with results given in Figure 13a. It can be seen from this figure that
both the original model and the skeletonized model ST6 are well calibrated with a KGE of 0.94. When using the
test data for model evaluation (the R6 event, see Figure 13b), the original model is able to produce a high KGE of
0.95, but the KGE is reduced to 0.88 and 0.78 for the calibrated ST6 and the ST6 without calibration (use the same
parameterization as the original model), respectively. Regarding the peak flow deviation percentages (PDP), the
original model achieves a value of 3.5%, which is significantly lower than the calibrated ST6 (PDP = 27%) and
the ST6 without calibration (PDP = 33%). Similar observations can be made for other rainfall events and
skeletonized models. These results indicate that the skeletonization can result in large model errors based on both
the full model simulations and the observations. Additionally, it is found that while re‐calibration of skeletonized

Figure 13. (a) Calibration and (b) evaluation results for flow at the outfall monitoring site based on the original model and the
skeletonized model ST6, where ST6 without calibration indicates that it uses the same parameterization as the original
model.
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models can improve model performance on the calibration event, its perfor-
mance significantly deteriorates when using a new evaluation rainfall event.

It is noted that the observations are only available at the outfall for the case
study, and many other metrics in Table 1 (e.g., hydrograph similarity at
monitoring locations or overall water depth in main pipes) cannot be assessed
using observations. However, Figure 13 shows that the findings derived by
using detailed model as the reference are overall similar to those using the
outfall observations as the reference. Consequently, it is believed that the use

of the detailed model output as the reference is effective for analysis. In addition, given that model calibration can
result in additional uncertainty and the focus of the present study is to explore the impacts of model skeletoni-
zation, the skeletonized models are not re‐calibrated in this study in order to isolate its potential impacts.
However, results in Figure 13 also can show that the re‐calibration of the skeletonized models does not signif-
icantly affect the findings made in Section 4.1.

4.3. Computational Time Savings

Time saving is one of the primary advantages of model skeletonization, as it enables more efficient repetitive
model applications such as real‐time prediction and uncertainty analysis. Table 3 shows the total computational
times for various models (original and skeletonized) under different RPs across eight different rainfall patterns
based on a PC with Intel CPU i7‐12700H. As shown in this table, the skeletonized models achieved significant
model run time reductions, ranging from 47.3% to 72.3% compared to the original model.

4.4. Performance Comparison of Different Compensation Methods

In this subsection, the TCM and the VCM are evaluated for their performance using the proposed evaluation
framework, with results given in Figure 14. As shown in this figure, the VCM consistently produce a superior
performance in mitigating the errors caused by model skeletonization. For example, the VCM is able to reduce the
PDP value at the outfall from the mean of 13% (ST6) to about 8%, but the TCM even shows a slight increase in
PDP value. Similarly, the VCM is capable of reducing the RMM values of the water depth, velocity and flow in
main pipes substantially as shown in Figure 14, but the TCM shows no improvement.

Table 4 displays average KGE values across 64 rainfall scenarios at both the outfall and monitoring locations for
ST6, the TCM and VCM. The VCM is consistently able to produce a larger KGE value relative to TCM. In
addition, the VCM also shows a better ability to improve the flood simulation accuracy as measured by the metric
FPS. Similar observations can be made for other skeletonized models and rainfall patterns. This indicates that the
VCM can be a better option to mitigate the impacts caused by model skeletonization, which can be used for
engineering practice.

Table 3
Computational Time (Seconds) and Time Savings Relative to the Original
Model Based on a PC With Intel CPU i7‐12700H

Model Original ST1 ST2 ST3 ST4 ST5 ST6

Time 1,253 660 502 476 411 367 347

Saving / − 47.3% − 59.9% − 62.0% − 67.1% − 70.7% − 72.3%

Figure 14. Impact of compensation methods on PDP, RMM of the relative depth, velocity, and flow in main pipes for ST6 under R1 across different return periods. TCM
and VCM are the time‐compensation method and the volume‐compensation method respectively.

Water Resources Research 10.1029/2024WR038394

JI ET AL. 17 of 20

 19447973, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038394, W

iley O
nline L

ibrary on [20/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5. Conclusions
UDNMs have been widely used in engineering practice for a range of
different applications such as the flood prediction, system design and man-
agement. These models are often built using the detailed data stored in the
corresponding GIS. Once this is done UDNMs are usually skeletonized to
reduce the complexity of the initially built model with the aim to improve
simulation efficiency when conducting the analysis based on many rainfall
and other scenarios, and enhance the management efficiency during the daily
work. However, there has been surprisingly few efforts made to understand
howmodel skeletonization affects the model's behavior and accuracy, leading
to an uncertainty in how these models perform for different applications
including flood risk analysis.

This paper proposes a new comprehensive framework to systematically
evaluate the impacts of model skeletonization on prediction accuracy. The
metrics used in the framework include the magnitude and timing of peak flow
at the outfall, the hydrograph similarity of the outfall flow, the hydrograph
similarity at monitoring locations, the overall water depth, velocity and flow

in main pipes as well as the flood volume and flood ranges. In addition, two compensation methods are compared
for their performance in mitigating the simulation errors induced by model skeletonization with the aid of the
proposed framework. A real UDNM is used in this study to assess the utility of the proposed framework, where a
total of six skeletonized models and 64 rainfall events are considered. The main findings and implications of this
study are outlined as follows:

1. Model skeletonization can significantly affect the magnitude of peak flow at the outfall, with the maximum
overestimation up to about 20%, but its impact is negligible on the timing of the peak flow of the outfall is
minor. Model skeletonization may also underestimate the peak flow magnitude at the outfall for a few rainfall
scenarios, which is likely caused by changes in the peak flow timing of the upstream pipes. Therefore, the
impacts of skeletonization on model's performance can be complex as it can be influenced by the model
structure and rainfall patterns.

2. The system hydraulics (water depth, velocity and flow) in the main pipes can also be affected by the model
skeletonization. Generally, skeletonization can introduce an overall higher water depth, velocity and flow in
main pipes, where the maximum flow increase can be up to 35%. This implies that the traditional studies that
focus only on hydraulics or hydrograph at the system outfall location could be misleading as model skel-
etonization can also influence the hydraulics of pipes at the intermediate locations of the UDN.

3. Model skeletonization may significantly alter the flood volume and extent properties derived from the UDNM
simulations and this aspect has been largely ignored in the past. Specifically, model skeletonization may
produce a relatively large number of new flood locations which do not exist when using the original model and
vice versa. Special attention should be paid to this when using the skeletonized model for flood risk analysis.

4. It is found that when flooding analysis for extreme rainfall events (e.g., RP= 100 years) is conducted, the flood
property is dominated by rainfall intensity rather than the model skeletonization. In addition, simulation errors
caused by model skeletonization are highly correlated to the PI of the rainfall events, where a rainfall event
with a larger PI is more likely to result in larger simulation errors in the main pipes.

5. By using the new evaluation framework it was found that the VCM consistently shows improved performance
when compared to the TCM for mitigating the errors induced by model skeletonization. However, the errors
remaining after the use of TCM are still moderate, posing a danger for possible underestimation or over-
estimation of flood risk.

The above findings are important for engineering practice as they provide insights into how skeletonization
affects the model's simulation performance. The above findings are conditioned on the real case study used in this
work but the evaluation framework is transferable to other case studies where it can be easily applied.

Given that model skeletonization can cause large simulation errors as demonstrated in this study, skeletonization
should be used when the potential benefits outweigh the downsides. Based on the findings of this study, if the
model is used to simulate floods for higher RP events (e.g., RP = 100 years) or long‐time rainfall events with
relatively low PI, the use of skeletonized model is unlikely to introduce large errors (RMM is around 8%). For

Table 4
Average Kling‐Gupta Efficiency Values Across 64 Rainfall Scenarios for ST6

Node

Compensation methods

ST6 TCM VCM

N1 0.89 0.89 0.93

N2 0.96 0.96 0.97

N3 0.87 0.88 0.88

N4 0.87 0.89 0.89

N5 0.90 0.90 0.93

N6 0.82 0.82 0.85

N7 0.95 0.95 0.97

N8 0.92 0.92 0.96

Outfall 0.93 0.93 0.97

Mean 0.90 0.90 0.93
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other cases, the volume‐compensation method (VCM, Davidsen et al., 2017) needs to be applied to the skele-
tonized models in order to mitigate the simulation errors, or improved skeletonization methods needs to be
developed in future.

Data Availability Statement
The data are available at Ji (2024).
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